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Abstract. We apply a new entropic scheme to study the critical behavior of the square-lattice Ising model
with nearest- and next-nearest-neighbor antiferromagnetic interactions. Estimates of the present scheme
are compared with those of the Metropolis algorithm. We consider interactions in the range where super-
antiferromagnetic (SAF) order appears at low temperatures. A recent prediction of a first-order transition
along a certain range (0.5–1.2) of the interaction ratio (R = Jnnn/Jnn) is examined by generating accurate
data for large lattices at a particular value of the ratio (R = 1). Our study does not support a first-order
transition and a convincing finite-size scaling analysis of the model is presented, yielding accurate esti-
mates for all critical exponents for R = 1. The magnetic exponents are found to obey “weak universality”
in accordance with a previous conjecture.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 64.60.Fr Equilibrium properties near
critical points, critical exponents – 05.10.Ln Monte Carlo methods

1 Introduction

The Ising square lattice with nearest-neighbor coupling
(nn) is an exactly soluble model and almost all its prop-
erties are well known. With the addition of next-nearest-
neighbor (nnn) interactions the problem is no longer ex-
actly soluble and several approximate methods have been
applied to attack this more general problem and to under-
stand the effect of adding the nnn-coupling on the critical
behavior of the system [1–7]. Of particular interest is the
case of competing interactions, where the ground state
is an arrangement with superantiferromagnetic (SAF) or-
der in which ferromagnetic rows (columns) alternate with
opposite oriented spins. The T = 0 phase diagram is
well known [3–5] and the SAF-order can be obtained in
both cases of a ferromagnetic or an antiferromagnetic nn-
coupling. The system, in zero-field, is governed by the
Hamiltonian:

H = Jnn

∑

<i,j>

SiSj + Jnnn

∑

(i,j)

SiSj (1)

where here both nearest-neighbor (Jnn) and next nearest-
neighbor (Jnnn) interactions will be assumed to be
positive (antiferromagnetic) and the system as is well
known [1–7] develops at low temperatures superantifer-
romagnetic order for R > 0.5. Note that there is no loss
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of generality in considering only Jnn > 0 since the critical
behavior associated with the SAF ordering is the same if
Jnn → −Jnn.

Several previous studies have suggested that the above
system may possess “anomalous” exponents, and a non-
universal critical behavior with exponents depending on
the coupling ratio R = Jnnn/Jnn has been the com-
monly accepted scenario for many years [1–7]. However,
recently the interest on the subject has been renewed and
some attempts to re-examine the behavior of this model
have taken place. In several papers Lopez et al. [8–10]
have used the cluster variation method (CVM) to study
this model and have concluded that the system under-
goes a first-order transition for a particular range of the
coupling ratio (0.5–1.2). Thus, a different scenario pre-
dicting first order transitions between ordered and disor-
dered phases, followed by continuous transitions outside
the first-order region has been proposed [8–10]. It ap-
pears that this scenario has been further supported by
the study of Buzano and Pretti [11]. These authors stud-
ied the same model with an additional 4-body coupling
using again the CVM and concluded that a first-order be-
havior is expected for a very large part of the parame-
ter space reproducing also the results of [8–10]. However,
they also considered the limiting case (Jnn = 0), where
the exact solution of Baxter model [12] applies, observ-
ing again a large part of the parameter space in which
the CVM predicts first-order behavior. Thus, the CVM
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fails to predict the true second order critical behavior for
the Baxter model and, this is of course, an obvious rea-
son for suspecting the CVM. It is quite possible that the
CVM, in any finite-order approximation, could produce
misleading “mean-field” behavior not unlikely with other
variational methods [13]. Notwithstanding that, a recent
Monte Carlo simulation [14] of a quite “similar model” has
provided strong evidence of first order behavior. This last
model includes nn- and nnn-antiferromagnetic couplings
but now the model is defined on the triangular lattice.
Having to deal with the same Hamiltonian and a similar
ground state arrangement (SAF-arrangement) one should
naively expect the same critical behavior for the two mod-
els. In the light of the above controversial situation, it is of
interest to follow the traditional finite-size scaling analysis
to re-examine the above prediction. As a first attempt, we
study here the square model for a particular value of the
coupling ratio (R = 1) using a new efficient entropic sam-
pling technique, presented in the next section. In Section 3
we present our numerical data and a finite-size analysis,
yielding accurate estimates for the critical exponents. Our
conclusions are summarized in Section 4.

2 The CRMES Wang-Landau entropic
sampling scheme

Flat histogram methods [15–19] are alternatives to im-
portance sampling and are expected to be much more ef-
ficient for studying a complex system. A simple and effi-
cient entropic implementation of the Wang-Landau (WL)
method has been presented recently by the present au-
thors. The random walk of this entropic simulation takes
place only in the appropriately restricted energy space [18]
and the method may be efficiently combined with the
N-fold way [16,19]. The approximation of canonical av-
erages, in a temperature range of interest, is as follows:

〈Q〉 =
∑

E 〈Q〉E G(E)e−βE

∑
E G(E)e−βE

∼=
∑

E∈(E1,E2)
〈Q〉E,WLG̃(E)e−βE

∑
E∈(E1,E2)

G̃(E)e−βE
. (2)

The restricted energy subspace (E1, E2) is carefully chosen
to cover the temperature range of interest without intro-
ducing errors. The microcanonical averages 〈Q〉E are de-
termined from the HWL(E, Q)-histograms, obtained dur-
ing the high-levels of the WL-process:

〈Q〉E ∼= 〈Q〉E,WL ≡
∑

Q

Q
HWL(E, Q)
HWL(E)

,

HWL(E) =
∑

Q

HWL(E, Q). (3)

The approximate density of states used in equation (2)
is obtained from the DOS determined in the last WL-
iteration (G̃(E) = GWL(E)). The updating of appropriate

histograms (Q may be any power of the order parameter
or some other quantity) is carried out only in the high-
levels of the WL-process. In these stages, the incomplete
detailed-balance condition has not significant effect on the
microcanonical estimators constructed from the cumula-
tive histograms as shown in [19]. Thus we have used only
the WL-iterations: j = 12–24 for lattices up to L = 100
and the WL-iterations: j = 16–26 for larger lattices. The
initial modification factor of the WL-process is taken to
be f1 = e = 2.718... and, as usual, we follow the rule
fj+1 =

√
fj and a 5% flatness criterion [18,19]. The rest

of the details and the N-fold implementation can be found
in [15–19].

In the present implementation of the CrMES method
we restrict the total energy range (Emin, Emax) to the
minimum energy-subspace producing an accurate estima-
tion for all finite-size anomalies. This restriction may be
defined by requesting a specified accuracy on a diverging
specific heat (or on a diverging susceptibility). Alterna-
tively the energy density function may be used in a sim-
pler way to restrict the energy space [19]. The finite-size
extensions of the critical energy subspaces (∆Ẽ) obey the
following law [18,19], from which α/ν may be estimated:

Ψ ≡
(
∆Ẽ

)2

Ld
≈ L

α
ν . (4)

Furthermore, following a similar procedure we may also es-
timate the critical exponent γ/ν, as already shown in [19].
Again, let M̃ be the value maximizing the order param-
eter density at some pseudocritical temperature, for in-
stance at the susceptibility pseudocritical temperature.
For a diverging specific heat (susceptibility) the pseudo-
critical temperature T ∗

L is the temperature corresponding
to the maximum of the specific heat (susceptibility). For
the cumulant finite-size anomaly the pseudocritical tem-
perature corresponds to the minimum of the cumulant.
The end-points (M̃±) of the magnetic critical subspaces
(CrMMS) are located by the condition:

M̃± :
P

M̃±
(T ∗

L)

P
M̃

(T ∗
L)

≤ r (5)

and the corresponding finite-size extensions of critical
magnetic subspaces obey close to a critical point, the “sus-
ceptibility” scaling law [19]:

Ξ ≡
(
∆M̃

)2

Ld
≈ L

γ
ν . (6)

3 Numerical evidence. Finite - size scaling
analysis

We have used two different definitions for the order pa-
rameter. With the help of four sublattices of the SAF-
ordering one may define a two-component order param-
eter and finally use its root-mean-square (rms) as done
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in [3]. We have used this rms order parameter and also,
as an alternative, the sum of the absolute values of the
four sublattice magnetizations. The resulting behavior is
very similar and the finite size extensions of the result-
ing CrMMS completely coincide supporting the identity
of the two representations for the present system. There-
fore, for large lattices only the second order parameter was
used. For a particular temperature, T = 2.082, close to the
critical temperature, we have calculated using long runs of
the Metropolis algorithm several thermodynamic proper-
ties of the system for R = 1 and we have found very good
agreement with the corresponding estimates obtained via
our entropic scheme.

Next, we search for a double peak in the energy prob-
ability density which should be expected if the system un-
dergoes a first-order transition as predicted by CVM. For
R = 1, we did not observe such double peaks. In contrast
when we used our algorithm to generate the corresponding
DOS of the triangular (SAF) model considered by Rasteli
et al. [14], the presence of the energy double-peaks re-
ported by these authors was very clear. The finite-size be-
havior of the fourth-order cumulant (of the order param-
eter) is indicative for the order of the transition [20,21].
We used this test in order to observe the behavior for the
square lattice model and to examine the prediction for a
first-order transition reported by Lopez et al. [8–10]. Com-
paring by this test the two models we had the opportunity
to observe that the difference in the cumulant-behavior be-
tween them was again profound. For the triangular model
the behavior was in very good agreement with that re-
ported in [14] indicating a first-order transition, while for
the present square model a behavior characteristic of a
second order critical point was observed [20]. It appears
that the first-order prediction of the CVM is false at least
for the case R = 1.

By using the crossing method [20] for the order-
parameter cumulant we have estimated the critical tem-
perature. Taking the average of all the crossing temper-
atures of the curves corresponding to sizes L = 70–160
we find: Tc = 2.0823(17). Including in this averaging the
smaller sizes L = 30–60 the estimate is: Tc = 2.0821(13).
Thus, Tc = 2.0823(17) seems quite safe and it is also in
good agreement with the estimates obtained by fitting the
specific heat’s and susceptibility’s pseudocritical temper-
atures to a power law behavior with a correction term:
T ∗

L = Tc + αL−λ(1 + b/L). These fits, not shown for
brevity, yield respectively: Tc = 2.0825(5), λ = 1.20(4)
and Tc = 2.0828(8), λ = 1.197(50).

Let us now try to estimate the magnetic critical ex-
ponent γ/ν. We first fit the values of the susceptibil-
ity peaks and our estimates for the critical susceptibility
(Tc = 2.0823) to a power law. Figure 1 presents three fit-
ting attempts assuming a simple power law. The peaks of
the susceptibility yield an estimate of the order of 1.79,
while the critical susceptibilities yield an estimate of the
order of 1.71. The exponent appears to acquire a value
in this wide range (γ/ν = 1.71 − 1.79) when we vary
the lattice sizes fitted and/or when we add corrections
terms to the simple power law. Note that the estimated

Fig. 1. Finite-size behavior of the susceptibility at the critical
and its pseudocritical temperature. Fitting parameters to a
simple power law are presented for the above estimates as well
as for their average. Note, that only their average gives an
exponent value very close to the 2D Ising value.

Fig. 2. Behavior of the scaled extensions Ξ(∆M̃) at the crit-
ical and susceptibility’s pseudocritical temperature. Their av-
erage is also shown. Fitting equation (6) to these data we have
obtained very good estimates of the critical exponent γ/ν:
1.7545(27), 1.7536(45), 1.7541(28) respectively.

in [3] range is 1.71 ± 0.15. The middle solid line in Fig-
ure 1 shows that the average of the susceptibility in the
two temperatures (Tc and T ∗

L(χ)) gives an estimate very
close to the 2D-Ising value (γ/ν = 1.75). These obser-
vations seem to favor the original view of [3] that the
system may obey a kind of “weak universality”. Accord-
ing to this hypothesis the “reduced” critical exponents,
i.e. γ̂ = γ

ν , β̂ = β
ν , φ̂ = 2−α

ν etc, are constant for sys-
tems obeying weak universality [22]. Thus, γ/ν will have
the 2D-Ising value independent of R. Let us now analyze
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Fig. 3. Finite-size behavior of the specific heat’s average at the
critical and its pseudocritical temperature. Fitting parameters
to the power law illustrated on the graph, are presented as well.

Fig. 4. Behavior of the average of scaled extensions Ψ(∆Ẽ)
at the critical and specific heat’s pseudocritical temperature.
Fitting parameters of the power law are given in the graph.

the scaling behavior of the finite-size extensions (∆M̃) in
equation (6). Figure 2 shows the behavior of these scaled
extensions in the two temperatures Tc and T ∗

L(χ)) together
with the behavior of their average. Fitting the numerical
data to a law of the form: y = αLw(1 + b/L) we obtain
very good fits and the estimates of γ/ν, are for the three
curves, in the range w = 1.75 ± 0.01. Thus, the scenario
of weak universality of γ/ν = 1.75 is greatly reinforced.

Finally, consider the scaling of the specific heat. We
have discovered that the behavior of the average of our es-
timates in the two temperatures (Tc and T ∗

L(C)) is quite
stable as one varies the lattice size. Figure 3 shows de-
tails of the fit for the “averaged” specific heat values and
Figures 4, 5 show the analysis of the scaled extensions
(Ψ(∆Ẽ)) appearing in equation (4). Comparing the last

Fig. 5. Behavior of the average of scaled extensions Ψ(∆Ẽ) at
the critical and specific heat’s pseudocritical temperature, for
the range L = 50 to 160.

two fits we find a unique case of stability and we confi-
dently estimate: α/ν = 0.412 ± 0.005. Assuming hyper-
scaling (α = 2 − dν), the correlation length exponent is
estimated as ν = 0.8292(24) and this value is consistent
( 1

ν = λ) with the estimates of the shift exponent found
from the pseudocritical temperatures. The exponent β/ν
should therefore be 0.125.

4 Concluding remarks

The prediction of the cluster variation method of a first-
order transition is not supported by the finite size behav-
ior of the system (R = 1). The original scenario [1–7]
of a non-universal critical behavior with exponents de-
pending on the coupling ratio has been strongly reinforced
by our numerical study and the conjecture of “weak uni-
versality” [3,22] seems to be well obeyed. Of course, an
analogous study for a range of R-values would strengthen
this last hypothesis. The idea of using scaled extensions
of dominant critical subspaces to estimate the exponents
α/ν and γ/ν seems to supply a quite accurate route for
their estimation.

This research was supported by NKUA/SARG under Grant
No. 70/4/4071.
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